Elastic Collisions and Gravity

Steven Ball LeTourneau University

Why Elastic Collisions?

- Most collisions in our day-to-day experience are far from elastic
- Most do not have an intuitive feel for elastic collisions.
- However, gravitational "collisions" are elastic and we can use this to redirect spacecraft and even boost spacecraft to higher velocities.

Conservation of mechanical energy: $\frac{1}{2} m_1 v_{1i}^2 + \frac{1}{2} m_2 v_{2i}^2 = \frac{1}{2} m_1 v_{1f}^2 + \frac{1}{2} m_2 v_{2f}^2$

Conservative Forces

• Elastic Collisions require the force acting between the masses to be conservative

 In truly elastic collisions the masses must not touch! (e.g. magnetic bumpers)

• Collision = Transfer of Momentum

General Result: $v_{2f} - v_{1f} = -(v_{2i} - v_{1i})$

Velocity difference remains the same (with a change in sign)

Demos with Pasco Dynamics Carts

For $m_1 = m_2$ $v_{1f} = v_{2i}$ $v_{2f} = v_{1i}$ Velocity Exchange!

Special Case: $m_1 = m_2$, $v_{2i} = 0$ $v_{1f} = 0$ $v_{2f} = v_{1i}$

1-D General Solution

 $v_{1f} = (m_1 - m_2)/(m_1 + m_2) v_{1i} + 2m_2/(m_1 + m_2) v_{2i}$

 $v_{2f} = 2m_1/(m_1+m_2)v_{1i} + (m_2-m_1)/(m_1+m_2)v_{2i}$

Symmetric!

Large & Small Masses

For
$$m_2 >> m_1$$

 $v_{1f} = -v_{1i} + 2v_{2i}$
 $v_{2f} = v_{2i}$

Special case:
$$v_{2i} = 0$$

 $v_{1f} = -v_{1i}$

Gravitational Trajectories: 2-D

Conic Sections

Apollo 13 "Free Return" Trajectory Mass of Moon $m_2 >> m_1$ Spacecraft $v_{1f} = -v_{1i}$

http://er.jsc.nasa.gov/seh/13index.htm

Gravitational Slingshot

Mass of Planet m₂ >> m₁ Spacecraft $v_{1f} = -v_{1i} + 2v_{2i}$

History of Gravitational Slingshot

- First proposed by Yuri Kondratyuk of the Ukraine in 1918-1919 to accelerate and decelerate spacecraft for interplanetary travel
- Shown to reduce fuel needed to propel a spacecraft into outer solar system by UCLA graduate student Michael Minovitch in 1961 during a summer internship at JPL

http://www.gravityassist.com/

Voyager Missions

Cassini Mission

